Testing of LoRa in Development & Manufacturing

RedwoodComm

June 14 2018 Darby CHO

Contents

LoRaWAN Certification Tests

LoRaWAN Certification Tests

- Protocol Certification
- RF Performance

- Necessity of Pre-Certification
- Requirement of Pre-Certification Tester
- Pre-Certification & RF Performance Tests
- Manufacturing Tests

LoRa Alliance Certification Standards

The documents below are available to all LoRa Alliance Members and can be found in the All Members/Certification folder within the Member Portal:

- LoRa Alliance Certification Policies and Procedures document*
- LoRa Alliance European EU 863-870MHz Region End Device Certification Requirements document V1.5*
- LoRa Alliance US902-928MHz Region End Device Certification Requirements document V1.3*
- LoRa Alliance Asia AS 923MHz Region End Device Certification Requirements document V1.1*
- LoRa Alliance South Korea 920-923MHz Region End Device Certification Requirements documentV1.2*
- LoRa Alliance India IN865-867MHz Region End Device Certification Requirements document 1.0*
- LoRa Alliance Customer Questionnaire V2.0 document*
- GitHub link to reference code https://github.com/Lora-net
- *Documents are exclusively available to LoRa Alliance Members via the Member Portal

ತ

Overview of LoRa Certification Test

LoRaWAN Certification Tests

Purpose

 To confirm the End Device meets the Functional Requirements of the LoRaWAN protocol specification

Test Mode Activation

- End Device should support test mode
- Should periodically report the number of DL packets using Downlink_Counter packet
- Should support Echo commands;
 EchoRequest & EchoResponse

Protocol Certification Test (e.g. EU)

LoRaWAN Certification Tests

- Test Application Functionality
 - Periodic downlink_counter, Echo command
- Over The Air Activation
- Cryptography
 - AEC encryption, MIC
- Downlink window timing
 - Timing offset tolerance
- Frame sequence number
 - FCntUp, FCntDown
- MAC commands
 - DevStatusReq, Invalid Command, NewChannelReq, RXParamSetupReq, LinkADRReq
- Confirmed Packets
 - Acknowledgement, UL/DL retransmission
- Packet Error Rates
 - SF12~SF7 for RX1 and RX2 windows, at least 60 DL packets, 95% reception

RF Performance Tests

LoRaWAN Certification Tests

- Main Requirement
 - For the 868 MHz ISM band, the device should not radiate in excess of 14 dBm (or 25 mW) ERP for any orientation
 - Receiver performance is important as Transmitter
- The pass/fail criteria is <u>deliberately not defined</u> by the LoRa Alliance (but requested by LoRaWAN operators)
- End-device Requirements for Testing
 - Should fulfil the LoRaWAN specification version 1.0.2 or newer
 - Should implement CW transmit mode via OTA commands
 - Should integrate the antenna or at least provide one

Transmitter Performance

LoRaWAN Certification Tests

- Channels
 - 863.1 MHz (low), 868.3 MHz (default, RX1 window), 869.525MHz (high, RX2 window)
- DUT should transmit CW signal (max output power)
- RMS detector is used (RBW: 100kHz)
- The result of the measurement shall be a full 3D radiation power pattern
 - ERP (φ, ϑ) = EIRP (φ, ϑ) G_{dipole}
 - G_{dipole}: the gain of an ideal dipole antenna (2.15dBi)

DUT

Receiver Performance (1/2)

LoRaWAN Certification Tests

- RX performance is described with the effective isotropic sensitivity EIS (φ, ϑ)
- RF Parameters
 - Channel: 868.3 MHz (RX1), 869.525 MHz (RX2)
 - BW: 125kHz
 - SF7(DR5) and SF12(DR0)
- The angle is chosen from a region where the antenna gain is stable

Receiver performance (2/2)

- Test at least 60 packets
- Sensitivity threshold
 - Attenuate the gateway TX
 power level with a precise RF
 step attenuators to achieve
 90% reception of packets in
 the respective position of DUT
 - The power value is recorded along with the direction it has been measured

LoRaWAN Certification Tests DUT Gateway Join-request Join-accept Any Packet Activate test mode Downlink Counter (cnt=0) **PASS** Downlink packet Downlink Counter (cnt=1) **PASS** Downlink packet Downlink Counter (cnt=2) **PASS** __Downlink packet Downlink Counter (cnt=2) **FAIL** Downlink packet Downlink Counter (cnt=3) **PASS**

Contents

Pre-Certification Tests

LoRaWAN Certification Tests

- Protocol Certification
- RF Certification

- Necessity of Pre-Certification
- Requirement of Pre-Certification Tester
- Pre-Certification & RF Performance Tests
- Manufacturing Tests

Development without Pre-Certification

Development with Pre-Certification

Requirement of Pre-Certification Tester

- Fulfil LoRaWAN specification V1.0.2 or newer
 - Flexible configuration of protocol and test parameters
- Support various regions
- Accurate TX power control down to -150dBm
- Accurate RX power measurement
- Same Test Result as Certification Test system
- Easy to use, compact to move

Why Need a Dedicated LoRa Tester

Ethernet

A MULTITECH®

Gateway

10 To 10 To

Attenuator

RF Shield Box or Chamber

Pre-Certification Tests

Control PC & Network Server

Not easy to control Network server and Gateway Various regional gateways required

Difficult to make very low signal using step attn.

- √ Simple & compact
- ✓ Multiple regions
- √ -150dBm

Dedicated LoRa Tester

LoRa Pre-Certification Tests

RF Performance Tests

Contents

Manufacturing Tests

LoRaWAN Certification Tests

- Protocol Certification
- RF Certification

Pre-Certification Tests

- Necessity of Pre-Certification
- Requirement of Pre-Certification Tester
- Pre-Certification & RF Performance Tests

Manufacturing Tests

Considerations on Manufacturing

Manufacturing Tests

- What needs to be tested in Production lines
 - Transmit Power
 - Receiver Sensitivity (PER)
- Selection of test mode
 - Test Time
 - Non-signaling mode is preferred than Signaling mode
 - Target Device
 - Non-signaling mode is applicable to both End-device and Gateway
- Automation
 - A wired control of DUT should be excluded
 - Simple protocol is required between DUT and the tester
 - Hence the firmware of DUT needs to be modified

MFG Test Solution of RWC5020A

Test Procedure & State Diagram

Manufacturing Tests

Verified with customers' firmware!

Example of Test Time

Manufacturing Tests

- Test time may depend on
 - SF
 - Payload length
 - Number of packets
 - Frame interval

Elapsed Test Time in sec

Number of packets	50	100	200
SF7	11	21	38
SF8	12	23	44
SF9	16	29	56
SF10	24	47	91
SF11	41	80	156
SF12	76	148	292

Determine the best test condition for your manufacturing tests!

Feedback

Questions?

Darby Cho

Manager of Sales and Technical Support

darby.cho@redwoodcomm.com

+82-70-7727-7011

http://www.redwoodcomm.com

